SOLVENT DEPENDENCE OF PEPTIDE CARBONYL CARBON CHEMICAL SHIFTS AND POLYPEPTIDE SECONDARY STRUCTURE:

THE REPEAT TETRAPEPTIDE OF ELASTIN

D. W. Urry, L. W. Mitchell and T. Ohnishi
Laboratory of Molecular Biophysics
and the
Cardiovascular Research and Training Center
University of Alabama in Birmingham
Birmingham, Alabama 35294

Received May 1,1974

SUMMARY: It is demonstrated that carbon-13 magnetic resonance may be used to evaluate polypeptide secondary structure by noting the solvent dependence of peptide carbonyl carbon chemical shifts. Solvent pairs are utilized in which one solvent is a poor proton (or deuteron) donor and the second is a good proton (or deuteron) donor. The peptide carbonyl carbon resonance of the carbonyl shielded from the solvent by intramolecular hydrogen bonding exhibits less downfield shift on introduction of CD3OD, D2O or 2,2,2-trifluoroethanol-d3 to dimethylsulfoxide-d6 solutions than do those of peptide carbonyls that are more exposed to the solvent. The approach is illustrated with the elastin repeat tetrapeptide, Val₁-Pro₂-Gly₃-Gly₄, wherein the Val₁ C-O is solvent shielded due to intramolecular hydrogen bonding to the Gly₄ NH.

Proton magnetic resonance (pmr) studies have been utilized for several years to delineate peptide NH protons in a manner that has been correlated with polypeptide secondary structure (1-7). The pmr methods provide information on relative solvent exposure and as such it should be appreciated that shielding from the solvent can occur due to reasons other than intramolecular hydrogen bonding. Once delineated other arguments must be introduced to determine if solvent shielding is due to secondary structure. The same situation holds for delineation of peptide carbonyls by carbon-13 magnetic resonance (cmr). With this caveat in mind appropriate delineation of both peptide NH moieties by pmr and peptide C-O moieties by cmr would reduce the problem of determining polypeptide secondary structure in solution to the proper pairing of delineated peptide NH with delineated peptide C-O groups to form the hydrogen bond.

Past efforts of pmr to yield secondary structure have been supported by x-ray diffraction studies. The studies of Kopple et. al. (2,3) on cyclohexapeptides using temperature dependence of peptide NH chemical shifts correlate well with x-ray diffraction studies of Karle and Karle (8) on cyclohexyl glycine. Similar delineation indicative of hydrogen bond formation by comparison of valinomycin with the valinomycin-potassium ion complex (4,5) was independently substantiated with x-ray diffraction studies on the complex (9). The several studies on gramicidin S using hydrogen-deuterium exchange rates (1) temperature dependence (4) and solvent dependence of peptide NH chemical shift (6) form a consistent picture which agrees with one of three possible conformations proposed by Hodgkin and Oughton on the basis of their crystal studies (10). Application of the pmr approach to non-cyclic peptides has also been substantiated. The conformation of the tetrapeptide tail of oxytocin proposed on the basis of pmr studies in this laboratory (11) was subsequently and independently proposed on the basis of x-ray diffraction studies by Rudko et. al. (12). A similar conformational feature, a β -turn with Pro as residue i+1, is the subject of the present report on the tetrapeptide, Val, -Pro, -Gly, -Gly, .

Gray and colleagues (13,14) have recently reported the presence of repeating peptide sequences in elastin. We have synthesized those sequences, and their oligomers and higher polymers and have carried out extensive pmr studies (15-18). Temperature studies on the tetrapeptide high polymer $\text{HCO-(V_1P_2G_3G_4)_nV}$ OMe in Me_2SO and in MeOH demonstrated the Gly_4 NH to have a lesser temperature coefficient (slope) as shown in Table I (16). Solvent dependence of peptide NH chemical shift also showed the Gly_4 NH to be solvent shielded (16). This shielding occurs in the monomer HCO(VPGG)OMe but not in HPGGVOEt; it occurs with two Gly_4 NH protons but not

Figure 1: 8-turn of the tetrapeptide VPGG

the third in $H(P_2G_3G_4V_1)_3$ OMe. This implies that the Val_i C-O is required for the shielding of the Gly_{i+3} NH. These results were interpreted in terms of the β -turn given in Fig. 1. MATERIALS AND METHODS

Carbon-13 magnetic resonance spectra were obtained on a JEOL-PFT-100P pulse Fourier transform spectrometer at 25.15 MHz utilizing an EC-100 computer system with 20K memory. Resolution of the transformed spectrum was 0.05 ppm. Protons were decoupled at 100 MHz and an internal deuterium lock was used at 15.36 MHz. A 10 mm sample tube was fitted with a 0.45 ml insert (Wilmad Glass Co., Inc., Buena, N. J.). An internal reference of tetramethylsilane (TMS) was used for the organic solvents and dioxane at 67.4 ppm for D₂O (19). Probe temperature was 22°C.

Synthesis and characterization of the polypeptides HCO-(VPGG)_n VOMe are reported elsewhere (16) as are the details of synthesis of the glycine-1-C-13 enriched peptides (20). RESULTS

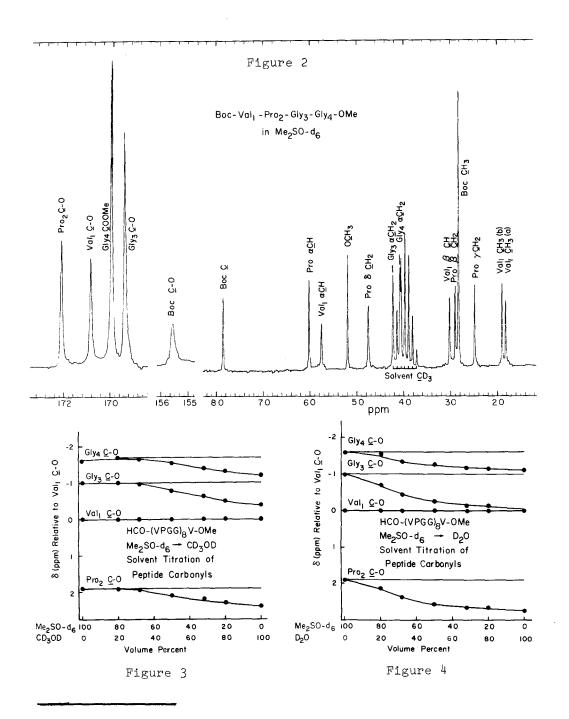
The complete cmr spectrum for $\operatorname{Boc-Val}_1-\operatorname{Pro}_2-\operatorname{Gly}_4-\operatorname{Gly}_4-\operatorname{OMe}$ in

:ABLE I - TEMPERATURE DEPENDENCE OF PEPTIDE NH CHEMICAL SHIFT FOR HCO-(Val,-Prog-Glyg-Glyh)ho-Val-OMe²

Peptide	Me ₂	SO-d ₆	MęOH							
Residue	Slope Hz/10°C	0° Intercept	Slope Hz/10°C	0° Intercept						
Val _l NH Gly ₃ NH Gly _h NH	-15.3 -12.7 -7.9	1810 1856 1776	-17.3 -15.8 -7.3	1806 1912 1837						

⁾ Slopes and intercepts given in Hz at 220 MHz. Property of the contract of th

'ABLE II - SOLVENT DEPENDENCE OF PEPTIDE CARBONYL CARBON CHEMICAL SHIFTS HCO-(Val,-Pro,-Gly,-Gly,)8-Val-OMe


Peptide Residue	lMe ₂ SO-d ₆	² CD ₃ OD 6	³ D ₂ O 6	4TFE-d ₃	1 → 2* Δδj	1-→3* Δδ;	1 → 4* Δδj			
Val ₁ <u>C</u> -0 Pro ₂ <u>C</u> -0 Gly ₃ <u>C</u> -0 Gly ₄ <u>C</u> -0	169.88 171.82 168.86 168.28	172.40 174.79 172.01 171.19	172.90 175.66 172.80 171.78	173.47 175.66 173.33 172.07	0 0.45 0.63 0.39	0 0.82 0.92 0.48	0 0.25 0.88 0.20			

The change in chemical shift for the indicated solvent pair given

 $\text{Me}_2\text{SO-d}_6$ is given in Fig. 2. Assignment of all resonances in the upfield region was achieved by stepwise synthesis. The carbonyl carbon resonances were assigned by glycine-1-C-13 enrichment and by chemical modification of the amino end. The Gly $_2$ \underline{C} -O was enriched to 2% and the Gly, \underline{C} 00Me was enriched to 3%. The Val₁ C-O was assigned by its 1 ppm upfield shift on replacement of the Boc protecting group by HCO-. By elimination the lowest field resonance is the Pro_{2} C-O. In the high polymer of the tetramer the highest field resonance is the Gly, C-O.

Table II contains the chemical shifts of the peptide carbonyl

relative to that of the Val \underline{C} -O i.e. $\Delta \delta_{j} = \delta_{j} (\underline{C}$ -O in proton donating solvent) - $\delta_{j} (\underline{C}$ -O in Me₂SO)- $\Delta \delta_{1}$ ositive values of $\Delta \delta$ indicate a greater downfield shift. esolution is 0.05 ppm.

carbon resonances in four solvents for $HCO-(Val_1-Pro_2-Gly_3-Gly_4)_8-Val-OMe$. In each case for the transition from solvent 1, Me_2SO-d_6 , to either of the other three solvents, the Val_1 C-O shifts the least. In the last three columns of Table II are given, for the three

solvent pairs, the solvent induced chemical shifts of each peptide carbonyl carbon resonance relative to that of the Val_1 C-0. It is important to note that similar results are obtained for the monomer HCO-VPGG-OMe but not for HCO-VPG-OMe.

A plot of the solvent titration $1 \longrightarrow 2$ i.e. $\text{Me}_2\text{SO-d}_6$ into CD_3OD is given in Fig. 3, where it is seen that the downfield shifts relative to the Val_1 $\underline{\text{C}}\text{-0}$ occur in a regular manner. This solvent pair is of particular interest as in each solvent the temperature dependence of peptide NH proton chemical shift (See Table I) demonstrated the Gly_4 NH to be solvent shielded i.e. to exhibit the least slope whereas the other two peptide NH moieties exhibit slopes which are about twice as large. This indicates that similar conformations exist in both solvents and provides a mutual explanation for the shielding of the Val_1 $\underline{\text{C}}\text{-0}$ and the Gly_4 NH. A plot of the solvent titration $1 \longrightarrow 3$, $\text{Me}_2\text{SO-d}_6 \longrightarrow \text{D}_2\text{O}$, is given in Fig. 4. Again the titration is seen to be regular with no complicated form to the curve.

DISCUSSION

The above results demonstrate a decreased solvent sensitivity of the Val_1 $\underline{\mathrm{C}}$ -0. Since the Val_1 residue precedes proline it is necessary that the primary structural feature be considered. This may be achieved by studying the tetramer $\mathrm{HCO-Val}_1\mathrm{-Pro}_{1+1}\mathrm{-Gly}_{1+2}\mathrm{-OMe}$ in the several solvents. In this case the Val_1 $\underline{\mathrm{C}}\mathrm{-O}$ is seen not to exhibit the shielding. For example, on going from $\mathrm{Me}_2\mathrm{SO-d}_6$ into $\mathrm{CD}_3\mathrm{OD}$ the Val_1 $\underline{\mathrm{C}}\mathrm{-O}$ and the Pro_{1+1} $\underline{\mathrm{C}}\mathrm{-O}$ exhibit the same shift within the resolution limit of 0.05 ppm. This tetramer is also of interest since it does not contain a Gly_{1+3} NH , suggesting that the Gly_{1+3} NH is required for the observed shielding of the Val_1 $\underline{\mathrm{C}}\mathrm{-O}$ just as in the pmr studies the shielding of the Gly_{1+3} NH required the Val_1 $\underline{\mathrm{C}}\mathrm{-O}$.

We have also observed selective solvent shielding in other polypeptides. In gramicidin S, a cyclodecapeptide with two-fold symmetry which was a model for the development of the pmr approaches (1,4,6), there is a preferential shielding of two peptide carbonyls whereas the other three exhibit 0.5 ppm or greater relative chemical shifts. While the assignments have not yet been made for the peptide carbonyl carbon resonances of gramicidin S, the differentiation is as expected for the secondary structure.

Correlation may also be found with oxytocin. Assignments of the peptide carbonyl carbon resonances have been made for acyclic oxytocin (non-disulfide bridged) in Me, SO (21) and for oxytocin in $\mathrm{D}_{2}\mathrm{O}$ (22). The three peptide carbonyl carbon resonances which exhibit the least shift are those which had been proposed to be involved in three intramolecular hydrogen bonds on the basis of pmr studies (11,23). Also the repeat pentapeptides (24) and hexapeptides of elastin show similar correlation between the cmr and pmr studies. Thus it would appear that solvent dependence of peptide carbonyl carbon chemical shift can, under favorable circumstances, be correlated with polypeptide secondary structure.

ACKNOWLEDGMENTS: This work was supported by the National Institutes of Health Grant No. HL-11310 and the National Science Foundation Grant No. GB-31665.

REFERENCES

- 1. Stern, A., Gibbons, W. and Craig, L.C., Proc. Nat. Acad. Sci. USA 61:734
- 2. Kopple, K.D., Ohnishi, M. and Go, A., J. Amer. Chem. Soc. 91:4264 (1969).
- 3. Kopple, K.D., Ohnishi, M. and Go, A., Biochemistry 8:4087 (1969).
- 4. Ohnishi, M. and Urry, D.W., Biochem. Biophys. Res. Commun. 36:194 (1969).
- 5. Urry, D. W. and Ohnishi, M. in "Spectroscopic Approaches to Biomolecular Conformation", ed. Urry, D. W. (Amer. Med. Ass. Press, Chicago, Ill.) pp 263-300 (1970).
- 6. Pitner, T.P. and Urry, D.W., J. Amer. Chem. Soc. 95:1399 (1972).
- 7. Pease, L.G., Deber, C.M. and Blout, E.R., J. Amer. Chem. Soc. 95:258 (1973).
- 8. Karle, I.L. and Karle, J., Acta. Cryst. 16:969 (1963).
 9. Pinkerton, M., Steinrauf, L.K. and Dawkins, P., Biochem. Biophys. Res. Commun. 35:512 (1969).
- 10. Hodgkin, D.C. and Oughton, B.M., Biochem. J. 65:752 (1957).
- 11. Urry, D.W. and Walter, R., Proc. Nat. Acad. Sci. USA 68:956 (1971).
- 12. Rukdo, A.D., Lovell, F.M. and Low, B.W., Nature New Biol. 232:18 (1971).

- Foster, J.A., Bruenger, E., Gray, W.R. and Sandberg, L.B., J. Biol. Chem. 248:2876 (1973).
- 14. Gray, W.R., Sandberg, L.B. and Foster, J.A., Nature 246:461 (1973).
- 15. Urry, D.W., Cunningham, W.D. and Ohnishi, T., Biochemistry 13:609 (1974).
- 16. Urry, D.W. and Ohnishi, T., Biopolymers (in press) (1974).
- 17. Urry, D.W. and Ohnishi, T., Rehovoth Symposium on Polyamino Acids, Polypeptides and Proteins and their Biological Implications (in press) (1974).
- 18. Urry, D.W., Advan. Experimental Med. Biol. 43:211 (1974).
- 19. Johnson, L.F. and Jankowski, W.C., in "Carbon-13 NMR Spectra, John Wiley and Sons, New York (1974).
- 20. Urry, D.W., Mitchell, L.W. and Ohnishi, T. (submitted to Biochemistry).
- 21. Smith, I.C.P., Deslauriers, R., Walter, R., Garrigou-Lagrange, C., McGregor, H. and Sarantakis, D., Ann. New York Acad. Sci. (in press) (1974).
- 22. Walter, R., Prasad, K.U.M., Deslauriers, R. and Smith, I.C.P., Proc. Nat. Acad. Sci. USA 70:2086 (1973).
- 23. Urry, D.W., Ohnishi, M. and Walter, R., Proc. Nat. Acad. Sci. USA 66:111 (1970).
- 24. Urry, D.W., Mitchell, L.W. and Ohnishi, T., Proc. Nat. Acad. Sci. USA (in press).